HPD-invariance of the Tate conjecture(s)

نویسندگان

چکیده

We prove that the Tate conjecture (and its variants) is invariant under homological projective duality. As an application, we obtain a proof, resp. alternative of in new case linear sections determinantal varieties, old cases Pfaffian cubic fourfolds and complete intersections quadrics. In addition, generalize from schemes to stacks this generalized conjecture(s) for low-dimensional root (twisted) orbifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Tate Conjectures and Arakelov Theory

Remark 1.2. As a note on terminology, according to Milne, an affine variety over a field k is a variety isomorphic to the spectrum of a finitely generated k-algebra R such that R ⊗k k that has no nonzero nilpotents. A variety is a separated scheme admitting a covering by finitely many affine schemes [Mil, p. 5]. This is slightly different from Hartshorne’s definition; he requires the base field...

متن کامل

On Beilinson’s Hodge and Tate Conjectures for Open Complete Intersections

In his lectures in [G1], M. Green gives a lucid explanation how fruitful the infinitesimal method in Hodge theory is in various aspects of algebraic geometry. A significant idea is to use Koszul cohomology for Hodge-theoretic computations. The idea originates from Griffiths work [Gri] where the Poincaré residue representation of the cohomology of a hypersurface played a crucial role in proving ...

متن کامل

A Remark on the Conjectures of Lang-trotter and Sato-tate on Average

We obtain new average results on the conjectures of Lang-Trotter and Sato-Tate about elliptic curves. Mathematics Subject Classification (2000): 11G05

متن کامل

Tautological Equations in M 3,1 via Invariance Conjectures

A new tautological equation of M3,1 in codimension 3 is derived and proved, using the invariance condition explained in [1, 9, 10, 11].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Noncommutative Geometry

سال: 2023

ISSN: ['1661-6960', '1661-6952']

DOI: https://doi.org/10.4171/jncg/462